Observing planet forming disks with ALMA

Basics of interferometry
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Need for high angular resolution

200 mas 50 pas
Planetary system Torus orbiting a SMBH in M87
in formation (Benisty+2021) (EHT Collaboration+2021)

The radius of the shadow of a

1 au at 100 pcis 10mas Schwarzschild BH at 16.8 Mpc is 38 pas

Several fundamental physical processes occur on angular scales that are <1”

©(arcsec) = 2 e/ Dy —  antenna of 4 km to have 0.1 a 2 mm
Interferometry is necessary to achieve such angular scales.




Aperture synthesis interferometry - background

For an interferometer formed by two antennas, it is possible to demonstrate that:

O(arcsec) = 2A¢m / Bym

where B is the baseline, i.e. the projected distance of the two antennas

One-Mile Telescope

e Close to Cambridge, UK

* Opened in 1964

« 3 antennas of 18-m

* First aperture synthesis
exploiting the Earth rotation




Aperture synthesis interferometry - background

For an interferometer formed by two antennas, it is possible to demonstrate that:

©(arcsec) = 2 em / Bim

where B is the baseline, i.e. the projected distance of the two antennas

One-Mile Telescope

* Close to Cambridge, UK
* Opened in 1964

« 3 antennas of 18-m

* First aperture synthesis ALMA

exploiting the Earth rotation » Altiplan of Chajnantor
* First lightin 2011

e 54 12-m, 12 7-m antennas




Going beyond a two element interferometer

A two element interferometer measures the Fourier transform of the sky brightness B,
where (u,v) are the coordinates of the baseline, and
A is the primary beam correction

Vu,v) = Ae™ " = /fl(a:,y)B(x,y)e_iQW(“x+”y)dxdy

A is the amplitude, and ¢ is the phase of the complex visibility.



Going beyond a two element interferometer

A two element interferometer measures the Fourier transform of the sky brightness B,
where (u,v) are the coordinates of the baseline, and
A is the primary beam correction

Vu,v) = Ae™ " = /fl(a:,y)B(x,y)e_iQW(“x+”y)dxdy
A is the amplitude, and ¢ is the phase of the complex visibility.

* (u,v) are the spatial frequencies in the directions E-W e N-S, and represent the
projected baseline in units of wavelength A

* (x,y) are the relative distance from a reference point in the direction E-W e N-S

 (x=0,y=0) are known as "phase center”

* The phase ¢ contains information on the position of the structures with spatial
frequencies (u,v) with respect to the phase center

» This FT relation is the van Cittert-Zernike theorem, on which aperture synthesis
interferometry is based.




Going beyond a two element interferometer

Vu,v) = Ae™ " = /fl(a;',y)B(m,y)e_iQW(“m+”y)dxdy

A is the amplitude, and ¢ is the phase of the complex visibility.

This means that if we have a measure of V(u,v),
we could reconstruct the sky brightness with a Fourier transform

B'(z,y) = A(z,y)B(x,y) = / V (u, v)e? ) dudy



Going beyond a two element interferometer
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A is the amplitude, and ¢ is the phase of the complex visibility.
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Information contained in amplitude and phase

I(z,y) AV (u,v)]

O Dirac Constant

Gaussian Gaussian
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Information contained in amplitude and phase

The amplitude holds the information on the contribution of different spatial scales,
the phase indicates where these spatial scales contribute to

I(z,y) V(u,v)

Ampiezza Fase




Information contained in amplitude and phase

The amplitude holds the information on the contribution of different spatial scales,
the phase indicates where these spatial scales contribute to

I(z,y) V(u,v)

Ampiezza Fase




Questions we will try to answer in this (1?) h

How to obtain a V(u,v) as dense as possible?
How to calibrate interferometric data (visibilities)?

How to reconstruct an image by having V(u,v,) measured in a discrete
set of points?



How to maximize the sampling of V(u,v)?

Increase the number of antennas (number of visibilities is N(N-1)/2),
where N is the number of antennas. The ALMA 12-m array has 50, ngVLA will have 244.

Use more configurations by moving antennas to physical pads
to sample the uv-plane on as many scales as we can
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How to maximize the sampling of V(u,v)?

Increase the number of antennas (humber of visibilities is N(N-1)/2),
where N is the number of antennas. The ALMA 12-m array has 50, ngVLA will have 244.

Use more configurations by moving antennas to physical pads
to sample the uv-plane on as many scales as we can
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How to maximize the sampling of V(u,v)?

Increase the number of antennas

Exploit the Earth rotation to sample different baselines
(Martin Ryle, Nobel prize in Physics in 1974)
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Examples of uv-tracks on SMA with 8 antennas at 345 GHz, Dec = -24 deg



How to maximize the sampling of V(u,v)?

Increase the number of antennas

Exploit the Earth rotation to sample different baselines
uv-coverage Image of a point source
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How to maximize the sampling of V(u,v)?

Increase the number of antennas
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How to maximize the sampling of V(u,v)?

Increase the number of antennas

Exploit the Earth rotation to sample different baselines
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How to maximize the sampling of V(u,v)?

Increase the number of antennas
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7 antenne

How to maximize the sampling of V(u,v)?
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How to maximize the sampling of V(u,v)?

8 antenne
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How to maximize the sampling of V(u,v)?

Increase the number of antennas

Exploit the Earth rotation to sample different baselines

uv-coverage Image of a point source
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How to maximize the sampling of V(u,v)?

Increase the number of antennas

Exploit the Earth rotation to sample different baselines

uv-coverage Image of a point source
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How to maximize the sampling of V(u,v)?
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How to maximize the sampling of V(u,v)?

Increase the number of antennas

Exploit the Earth rotation to sample different baselines

uv-coverage Image of a point source
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How to maximize the sampling of V(u,v)?

Increase the number of antennas

Exploit the Earth rotation to sample different baselines

uv-coverage Image of a point source
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How to maximize the sampling of V(u,v)?

Increase the number of antennas

Exploit the Earth rotation to sample different baselines

uv-coverage Image of a point source
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Geographical constraints can lead
to peculiar uv-tracks

uv-coverage of observations of BH in M87 ot the Event Horizon Telescope (EHT)
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Data calibration (examples from ALMA/VLA)

Fundamental equation of calibration

Vii(t) visibility measured between antennas i and |
gi(t) complex gain of antenna i

Vtrue(t)  true visibility

&;(t) noise

The linear dependance between Vij(t) and Vtrue(t) depends on the
array design. Note that the response associated to any pair of
antennas does not depend on any other pair of antennas.

At any time t, we thus have N(N-1)/2 measures to obtain gj(t) for
N antennas.



Why do we need to calibrate data?

A priori, we do not know the relation between Vjt) and Vtrue(t). In
interferometry, calibrators are observed every hour, and the calibrations are
not shared with other observations (differently from optical/IR telescopes) for
the following reasons:
The gain tfunctions depend on the troposphere and ionosphere, and how
they affect the wave front. But these have a spatial dependance.

* The ionosphere can offset phase by 1°/s on baselines >10 km

 Electronics can change with time

» Other observations may not be optimized for another observation




Calibrators

The best way to solve the calibration equation is to use calibrators that are
very well characterised and table: Best option is point sources that are bright
in cm-mm. If they are point sources, the phase will be zero (assuming that
the phase center corresponds to the location of the calibrator)

Vii(t) = g:(t)g; (£)V'(t) 4 €i5(t)

The gain functions are computed on the calibrators, and are then applied to
the scientific observations (cross-calibration)



Example from ALMA data

3 fundamental calibrations for every observation:

~lux calibration
Passband calibration (spectral dependance)

Phase calibration

Intent :
Scan 1 3 45 8911 121315 1617 19 202123
WA | l--l-- e |
Pointing |- 2 6 10 14 18 22
Atmosph. l I I ' | I
Amplitude r
Bandpass |
: 5 9 13 17 21
Check | :
: 4 8 1 1 20 24
PhaseCal F
Science |
0 8

Time since start of observation (min)

68




Example from ALMA data

Gain functions computed using the phase-calibrator (two colors show two

different polarizations).
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Self-calibration

If the astrophysical source is very bright, it is possible to solve the calibration
equation using the source itself, after having applied the cross-calibration.
This practise has the following advantages:

e The gain functions can be computed more frequently (both phase and
amplitude)

* The gain functions are computed in the same of the source (pointing
changes with calibrators)
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Self-calibration

It's an iterative process:

1. | compute the image after having applied the cross-calibrations (we
see soon how to make an image).

2. | use the Fourier transform of this image as Ve to compute the gain

functions on a shorter time interval than the former one.

3. | re-compute the image and check that the quality has improved

4. | go back to point 2) and | keep going as long as my image quality
improves (in this school we will not go into details of what ‘image
quality’ means in interferometry, but for a first approach just use the
snr.)
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Examples of self-calibration
Cygnus A

Image without self-calibration



Examples of self-calibration
Cygnus A
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Examples of self-calibration
Cygnus A
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Examples of self-calibration
Cygnus A
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Examples of self-calibration

PDS 70: discovery of first circumplanetary disk

After self-calibration

Before self-calibration
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Examples of self-calibration

PDS 70: discovery of first circumplanetary disk
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Examples of self-calibration

PDS 70: discovery of first circumplanetary disk

Higher resolution data confirmed the presence of
a candidate CPD (Benisty+2021)



