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When/why do we need computer simulations?

* When a problem becomes too complicated to solve with pen and paper.

* large number of bodies (e.g., n-body simulations where n >> 1)

* non-linear phenomena (e.g., HD/MHD instabilities)

* In Astronomy, [ab experiments are impossible most of the time.

* What would you do when you’d like to make your own planet?



One thing to keep in mind

» Computers do (and only do) what they are asked to do.

* If you give your computer incorrect initial conditions, equations, assumptions,

etc., it will not correct them for you!
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In this lecture, we will talk about

* Disc structure (initial conditions for any disc simulations)
 Gas-dust interaction

* Project introduction
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Let’s consider a disk in hydrostatic equilibrium.

* Along each direction, all the relevant forces should be in balance.

* Otherwise, you will see the disk evolves to find an equilibrium configuration

(or even the simulation crashes)!



Force balance in the vertical direction
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Force balance in the vertical direction
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Force balance in the vertical direction
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Protoplanetary discs are “flared”
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What if the disc temperature is vertically stratified?

* HD 163296 temperature using CO isotopologues
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What if the disc temperature is vertically stratified?
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Force balance in the radial direction

f—




Force balance in the radial direction

vi  GM.R L 1ap .
R~ (RE+ 222 " ,dR .




Force balance in the radial direction
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The equilibrium rotational velocity has vertical shear.
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In summary, if you’d like to run a (M)HD simulation

1. Define the temperature structure T(R,Z)

2. Define the density structure
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3. Define the velocity structure
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Aerodynamic drag

* Epstein drag: drag occurs as the particle collides with individual gas

molecules.

* The drag force is given by a = size of the particle

4 5 pg = gas density
F D = —=<Ta pgA’U’Uth Av = relative velocity between the particle and gas

3 v¢n = thermal speed of the gas
* The stopping time is given by
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Stokes number

TPsQ
23,

 Dimensionless stopping time St = tstoplx =

* When St << 1, particles follow the gas motion.
* When St >> 1, particles decouple from the gas.

* When St ~ 1, particles are marginally coupled to the gas.



Radial drift “problem” or meter-size “barrier”

* The timescale for the radial drift of St = 1 particles is only 1000 orbits.

* At 1 au from a solar-mass star, this is only 1000 years!

See e.g., Weidenschilling (1977)



Evidence of radial drift

a Scattered light b Thermal continuum € Spectral line emission

Andrews (2020); TW Hya



Pressure bumps can trap dust.
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Pressure bumps can trap dust.
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Pressure bumps can trap dust.
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Evidence of dust trapping
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Dust trapping might be happening ubiquitously.

Bae et al. (PPVII)
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Vertical settling

* When the thickness of a dust layer is determined by turbulent

diffusion and vertical settling, t4;rr = tsett-
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* When the thickness of a dust layer is determined by turbulent

diffusion and vertical settling, t4;rr = tsett-
¢ tdiff — HC%/DZ) where DZ = CZZCSZ/QK.

* tserr = 1/(St Q) from P;;rav = Fp

* Hy = Hy\Ja/St




Evidence of vertical settling
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In summary,

* the dust distribution can be very different from the gas distribution;
* the gas-dust interaction can be understood through aerodynamic drag;

* the level of aerodynamic drag depends on the Stokes number.

* The beauty is that we now “see” gas-dust interaction happening!
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* Dust can grow in size.

* Solving full coagulation and fragmentation along with HD is computationally
expensive (see e.g., Drazkowska et al. 2019).
* A more affordable approach would be to use a limited number of dust

populations (e.g., small vs. large) in an azimuthally/vertically-averaged setup

(e.g., Brauer et al. 2008, Birnstiel 2010, 2012).



Projects

1. Planet-disk interaction and continuum observations

2. Vertical shear instability in molecular line observations

* FARGO3D/RADMC-3D setup files, output files, and Jupyter

notebooks are available on this google drive.

* Jupyter notebooks are under the RADMC-3D folder of each project.


https://drive.google.com/drive/folders/1oE9wPzatpU_5mwLyHmuGtpIZ4RdF_btw?usp=sharing

