2020

  1. Ballabio, Alexander, Clarke, “Forbidden line diagnostics of photoevaporative disc winds”, eprint, https://arxiv.org/pdf/2006.09811.pdf
  2. Frasca et al, “ISO-ChaI 52: a weakly-accreting young stellar object with a dipper light curve”, eprint, https://arxiv.org/pdf/2006.07921.pdf
  3. Nixon et al, “Emission from elliptical streams of dusty debris around white dwarfs”, eprint, https://arxiv.org/pdf/2006.07639.pdf
  4. Coughlin et al, “Variability in Short Gamma-ray Bursts: Gravitationally Unstable Tidal Tails”, eprint, https://arxiv.org/pdf/2006.03174.pdf
  5. Tychoniec et al, “Dust masses of young disks: constraining the initial solid reservoir for planet formation”, eprint, https://arxiv.org/pdf/2006.02812.pdf
  6. Menard et al, “Ongoing flyby in the young multiple system UX Tauri”, eprint, https://arxiv.org/pdf/2006.02439.pdf
  7. Jennings et al, “Frankenstein: Protoplanetary disc brightness profile reconstruction at sub-beam resolution with a rapid Gaussian process” MNRAS Advance Access, https://arxiv.org/pdf/2005.07709.pdf
  8. Veronesi et al, “Is the gap in the DS Tau disc hiding a planet?”, eprint, https://arxiv.org/pdf/2005.04244.pdf
  9. Facchini et al, “Annular substructures in the transition disks around LkCa 15 and J1610”, eprint, https://arxiv.org/pdf/2005.02712.pdf
  10. Sacchi et al, “What causes the fragmentation of debris streams in TDEs?”, eprint, https://arxiv.org/pdf/2005.02624.pdf
  11. Laibe, Bréhier, Lombart, “On the settling of small grains in dusty discs: analysis and formulae”, MNRAS, Volume 494, Issue 4, pp.5134-5147, https://arxiv.org/pdf/2004.03689.pdf
  12. Maureira et al, “Orbital and mass constraints of the young binary system IRAS 16293-2422 A”, eprint, https://arxiv.org/pdf/2005.11954.pdf
  13. Graziotin et al, “Behavioral Software Engineering: Methodological Introduction to Psychometrics”, eprint, https://arxiv.org/pdf/2005.09959.pdf
  14. Haworth et al, “Massive discs around low-mass stars”, MNRAS, Volume 494, Issue 3, pp.4130-4148, https://arxiv.org/pdf/2001.06225.pdf
  15. Jaupart, Laibe, “Channels for streaming instability in dusty discs”, MNRAS, Volume 492, Issue 4, p.4591-4598, https://arxiv.org/pdf/2001.02692.pdf
  16. Keppler et al, “Gap, shadows, spirals, streamers: SPHERE observations of binary-disk interactions in GG Tau A”, eprint, https://arxiv.org/pdf/2005.09037.pdf
  17. Lombart et al, “VLT/SPHERE survey for exoplanets around young, early-type stars including systems with multi-belt architectures”, eprint, https://arxiv.org/pdf/2005.08850.pdf
  18. Rosotti et al, “The efficiency of dust trapping in ringed proto-planetary discs”, MNRAS Advance Access, https://arxiv.org/pdf/2004.11394.pdf
  19. Booth, Owen, “Fingerprints of giant planets in the composition of solar twins”, MNRAS, Volume 493, Issue 4, p.5079-5088, https://arxiv.org/pdf/2002.11135.pdf
  20. Sinclair et al, “Planet gap opening across stellar masses”, MNRAS, Volume 493, Issue 3, p.3535-3547, https://arxiv.org/pdf/2002.11036.pdf
  21. Manara et al, “X-Shooter survey of disk accretion in Upper Scorpius I. Very high accretion rates at age>5 Myr”, eprint, https://arxiv.org/pdf/2004.14232.pdf
  22. van Terwisga et al, “Protoplanetary disk masses in NGC 2024: Evidence for two populations”, eprint, https://arxiv.org/pdf/2004.13551.pdf
  23. Muro-Arena et al, “Spirals inside the millimeter cavity of transition disk SR 21”, A&A, Volume 636, id.L4, 6 pp., https://arxiv.org/pdf/2003.08189.pdf
  24. Garufi et al, “ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). I. CO, CS, CN, and H2CO around DG Tau B”, A&A Volume 636, id.A65, 12 pp., https://arxiv.org/pdf/2002.10195.pdf
  25. Nealon, Price, Pinte, “Rocking shadows in broken circumbinary discs”, MNRAS, Volume 493, Issue 1, p.L143-L147, https://arxiv.org/pdf/2002.02983.pdf
  26. Aly, Lodato, “Efficient dust ring formation in misaligned circumbinary discs”, MNRAS, Volume 492, Issue 3, p.3306-3315, https://arxiv.org/pdf/2001.03066.pdf
  27. Alcalà et al, “2MASS J15491331-3539118: a new low-mass wide companion of the GQ Lup system”, A&A, Volume 635, id.L1, 8 pp., https://arxiv.org/pdf/2001.10879.pdf
  28. Scardoni et al, “Type II migration strikes back – an old paradigm for planet migration in discs”, MNRAS, Volume 492, Issue 1, p.1318-1328, https://arxiv.org/pdf/1912.07313.pdf
  29. Sellek, Booth, Clarke, “The evolution of dust in discs influenced by external photoevaporation”, MNRAS, Volume 492, Issue 1, p.1279-1294, https://arxiv.org/pdf/1912.06154.pdf
  30. Somigliana et al, “Effects of photoevaporation on protoplanetary disc `isochrones'”, MNRAS, Volume 492, Issue 1, p.1120-1126, https://arxiv.org/pdf/1912.05623.pdf
  31. Bohn et al, “The Young Suns Exoplanet Survey: Detection of a wide-orbit planetary-mass companion to a solar-type Sco-Cen member”, MNRAS, Volume 492, Issue 1, p.431-443, https://arxiv.org/pdf/1912.04284.pdf
  32. Ubeira-Gabellini et al, “Discovery of a Low-mass Companion Embedded in the Disk of the Young Massive Star MWC 297 with VLT/SPHERE”, ApJ Volume 890, Issue 1, id.L8, https://arxiv.org/pdf/2002.01946.pdf
  33. Kama et al, “Mass constraints for 15 protoplanetary discs from HD 1-0”, A&A, Volume 634, id.A88, 12 pp., https://arxiv.org/pdf/1912.11883.pdf
  34. Nealon, Cuello, Alexander, “Flyby-induced misalignments in planet-hosting discs”, MNRAS, Volume 491, Issue 3, p.4108-4115, https://arxiv.org/pdf/1911.05760.pdf
  35. Rosotti et al, “Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary-disc interaction and a vertical temperature gradient”, MNRAS, Volume 491, Issue 1, p.1335-1347, https://arxiv.org/pdf/1911.00518.pdf
  36. Cuello et al, “Flybys in protoplanetary discs – II. Observational signatures”, MNRAS, Volume 491, Issue 1, p.504-514, https://arxiv.org/pdf/1910.06822.pdf
  37. Hendler et al, “The evolution of dust-disk sizes from a homogeneous analysis of 1-10 Myr-old stars”, ApJ, eprint, https://arxiv.org/pdf/2001.02666.pdf
  38. Toci et al, “Long-lived Dust Rings around HD 169142”, ApJ Volume 888, Issue 1, article id. L4, 7 pp. (2020), https://arxiv.org/pdf/1911.08580.pdf
  39. Sanchis et al, “Demographics of disks around young very low-mass stars and brown dwarfs in Lupus”, A&A Volume 633, id.A114, 23 pp., https://arxiv.org/pdf/1911.06005.pdf
  40. Sicilia-Aguilar et al, “Time-resolved photometry of the young dipper RX J1604.3-2130A. Unveiling the structure and mass transport through the innermost disk “, A&A Volume 633, id.A37, 20 pp., https://arxiv.org/pdf/1911.04938.pdf

2019

  1. Lebreuilly, Commerçon, Laibe, “Small dust grain dynamics on adaptive mesh refinement grids. I. Methods”, A&A Volume 626, id.A96, 17 pp., arXiv:1905.01948
  2. Manara et al, “Constraining disk evolution prescriptions of planet population synthesis models with observed disk masses and accretion rates”, A&A, Volume 631, id.L2, 8 pp., arxiv.org/abs/1909.08485
  3. Toscani, Lodato, Nealon, “Gravitational wave emission from unstable accretion discs in tidal disruption events”, MNRAS, Volume 489, Issue 1, p.699-706, arxiv.org/pdf/1908.02969.pdf
  4. Venuti at al, “X-shooter spectroscopy of young stars with disks. The TW Hydrae association as a probe of the final stages of disk accretion”, Accepted for publication in A&A, arxiv.org/abs/1909.06699
  5. Miotello et al, “Bright C2H emission in protoplanetary disks in Lupus: high volatile C/O>1 ratios“, A&A, in press, arXiv:1909.04477
  6. Alcalà et al, “HST spectra reveal accretion in MY Lupi”, A&A, Volume 629, id.A108, 12 pp., arxiv.org/pdf/1908.10647.pdf
  7. Cuello & Giuppone, “Planet formation and stability in polar circumbinary discs”, A&A, 628, A119, arXiv:1906.10579
  8. Winter et al, “A solution to the proplyd lifetime problem”, accepted for publication in MNRAS, arxiv.org/pdf/1909.04093.pdf
  9. Coutens et al, “VLA cm-wave survey of young stellar objects in the Oph A cluster: constraining extreme UV- and X-ray-driven disk photo-evaporation — A pathfinder for Square Kilometre Array studies”, A&A, arXiv:1909.03515
  10. Poblete, Cuello, Cuadra, “Dusty clumps in circumbinary discs”, accepted for publication in MNRAS, arxiv.org/abs/1908.05784
  11. Chachan et al, “Dust accretion in binary systems: implications for planets and transition discs”, MNRAS, arXiv:1908.11377
  12. Veronesi et al, “Multi-wavelength observations of protoplanetary discs as a proxy for the gas disc mass”, MNRAS, arXiv:1908.08865
  13. Manara et al, “Observational constraints on dust disk sizes in tidally truncated protoplanetary disks in multiple systems in the Taurus region”, A&A 628, A95, arxiv.org/abs/1907.03846
  14. Rosotti et al, “The time evolution of dusty protoplanetary disc radii: observed and physical radii differ”, MNRAS, Volume 486, Issue 4, p.4829-4844, arXiv:1905.00019
  15. Ubeira Gabellini et al, “A dust and gas cavity in the disc around CQ Tau revealed by ALMA”, MNRAS, Volume 486, Issue 4, p.4638-4654, arXiv:1905.00909
  16. Giuppone, Cuello, “Parametric study of polar configurations around binaries”, in press, arXiv:1907.08180
  17. Rosotti et al, “On the millimetre continuum flux-radius correlation of proto-planetary discs”, MNRAS, Volume 486, Issue 1, p.L63-L68 , arXiv:1905.00021
  18. Lodato et al, “The newborn planet population emerging from ring-like structures in discs”, MNRAS Volume 486, Issue 1, p.453-461, arXiv:1903.05117
  19. Facchini et al, “High gas-to-dust size ratio indicating efficient radial drift in the mm-faint CX Tauri disk”, A&A 626, L2 , arXiv:1905.09204
  20. Cazzoletti et al, “ALMA survey of Class II protoplanetary disks in Corona Australis: a young region with low disk masses”, A&A Volume 626, id.A11, 18 pp., arXiv:1904.02409
  21. Mesa et al, “Exploring the R CrA environment with SPHERE. Discovery of a new stellar companion”, A&A, arXiv:1902.02536